PLAYER MISSILE
EDITOR

ARVOIX

Artworx Software Company
150 North Main Street « Fairport, New York 14450

PLAYER MISSILE EDITOR

written by Dennis Zander
(C) 1981 by Artworx Software Company

This program is designed to facilitate the creation of players and
missiles for the player missile graphics system of the Atari computer
(see ref. 1 & 2). A player is a column one byte wide which more than
covers the screen vertically. Up to four players may be "drawn", each
on its own one byte by twenty byte area. The players are drawn one
point at a time, producing up to four figures in graphics mode 0. The
program calculates the equivalent byte values for the eight points in
each row of a player, shows the figure in real size and stores the data
in strings as part of the program. Groups of figures (or players) may
be viewed quickly in real size or tested in the demo game. The demo can
be set to use each of four players for movement in a different
direction, or to sequence through the four players for animation
(framing) effects. Players can then be moved around the screen in the
demo/game mode by using a joystick.

The game Demo shows how fast players may be moved on the screen using
strings in BASIC. This technique has been described by George Blank in
Creative Computing (see ref. 3). An outline of the PMEDIT program is
given in Appendix 1.

PLAYER/MISSILE WITH STRINGS

This whole system of moving players or rapidly changing a particular
player is based upon the use of machine language routines that are part
of the BASIC cartridge. In Atari BASIC a string is nothing more than a
sequence of bytes; one byte per character in the string. Any value from
0 to 255 1is legal although '34' and '155' are not usable because of the
way in vwhich data is stored. If we could get BASIC to think that P1$ is
player 1 then when we say P1$(Y)=SHIPS$: P1S$(Y+l)=SHIPS$: P1$(Y+2)=SHIPS
etc., the string SHIP$ and the equivalent player generated will very
rapidly be moved down the screen in the direction of increasing Y values
(see Lines 50-75 in Appendix 3 for example). The entire string is moved
regardless of size, as long as no errors are created (i.e. P1$ is too
short) . The player SHIP$ must start and stop with a blank or you will
leave a trace behind as you move up and down. This is the reason for
the INSERT 1 option of the editor just in case you forget to 1leave a
blank at the top.

To rapidly change players for animation, explosions, etc., you simply
equate strings:

P1$(Y) = WALKER1S
P1$(Y) = WALKER2S
P1$(Y) = WALKER3S
P1$(Y) = WALKER4S

The demo game shows this with the ALTERNATE function. Lines 380-398 of
the program show an effective way in which to cycle player shapes.
Substituting each of four or more players for one displayed player in a
cycle as the player is moved across the screen can produce a very
animated player. Try the robot provided in group 3 in Alternate mode!

It is quite easy to move horizontally; this is done with a simple POKE
53248, X. It is a good idea to equate PLX to 53248 and thus use "POKE
PLX,X". The whole player, a 128 byte or 256 byte (double or single line
resolution) column is instantly moved to the new X position. The
horizontal position registers, as they are called, are at:

53248 PLAYER 0
53249 PLAYER 1
53250 PLAYER 2
53251 PLAYER 3

POKE PLX +2, X will move player 2 to the location X. While players are
a full byte wide, all four missiles are stored in the same column of
bytes, two bits per missile. Missiles are not automatically fired, but
must be moved Jjust like a player. One difficulty with this method is
that the four missiles are all part of the same byte so that moving
vertically with the string method may cause some missiles to be erased
when passing each other vertically. Each missile has its own horizontal
register, 53252 - 53255 are missiles 0 - 3 respectively. The memory
requirements for players and missiles are summarized in Appendix 2.

Fooling BASIC into storing the strings in the player missile area when
running a program is done in lines 9100 - 9155 of the PMEDIT program.

9115 Checks for the end of memory and steps back enough pages to allow
for the graphics mode which you are using.

9120 Gets the address of the variable table.
9125 Gets the address of the string storage area.

9130 Calculates the new offsets from where BASIC thinks the string is to
where we want it to be.

9140 - 9155 The offsets, array size and number of elements stored are
poked into the appropriate addresses.

IMPORTANT! This method of using strings for players assumes that the
first variable defined in your program is as shown in Line 10, even if
you have a U=l ahead of this it will not work! If you add Line 10 to an
existing program, it will not work because other variables were
historically defined first! However, all is not lost. By LISTing your
game program to cassette or disk after adding Line 10 as the first
variable and typing NEW and ENTER "C:" or ENTER "D:GAMENAME", BASIC will
reorder the variables as though everything were typed in fresh. On a
frequently edited program, this also can reduce the memory required.

EDITOR

The editor may be entered after selecting player resolution, by typing
an 'E' when the program comes up or by pressing START when in the demo
mode. When first entering the editor, you will be viewing player Group
0. As supplied, Group 0 contains only one player 8 bytes in 1length.
The following discussion will explain the options used in the editor.
It is followed by a sample practice session.

OPTIONS

Options are selected by typing the first letter of the option when the
first letter is highlighted (B - bytes) or the labeled key if the word
is highlighted (DELETE key for example).

B - BYTE sets the number of bytes used, 1 - 20. T20 digits must be
entered even if the number of bytes is less than ten (i.e. for 8 bytes
enter 08) but no 'RETURN' is required. If you mistype, enter the second
digit and type 'B' again.

P — PLAYER sets the number of players in this player group (1 - 3).
Note that the players are also designated by directions: up, dn, rt,
le; for up, down, right and left respectively. When in demo mode, the
player specified will be used for the direction indicated. If there are
less than four players, then player 1 will also be player 3 and player
0 will also be player 2. Player 0 will also be player 1 if there is
only one player.

D - DEMO takes you to the game demo. The START button returns you to
the editor.

C - COLOR lets you set the color for each player of the group being
edited. Left - Right on the joystick changes the hue and Up - Down
changes the luminosity. Pushing the trigger saves the player color.
All colors are stored when the group is STORE'd.

G - GROUP selects the player group to be edited and sets the identifying
number which it will be stored as (two digits must always be used as in
BYTE). If the group number is 6 for example, then the player strings
will be stored in lines 20060 through 20065 (LINE = 20000 + 10 * 6).
The group specified by the number does not come up until the EDIT key is
pressed.

J - JOIN/SEP puts the real size players in the lower left corner either
edge to edge or separates them. The key is alternate acting.

E - EDIT displays the player group specified in GROUP for editing
purposes.

S - STORE saves the players appearing on the screen into strings in the
lines indicated by the GROUP number. At this time you will also be
asked for a group name which will be put into a remark at the end of the
player string. IMPORTANT! Stored players are only saved as part of the
program in RAM and do not become permanent until you type 'Q' for QUIT
which will then save everything onto disk or cassette.

Q - QUIT saves the entire program with any new data strings to disk or
cassette. The program tests to see if there is a disk present, and if
so will then automatically save the file PMEDIT. See lines 700 - 750 of
the program code.

N - NEXT will call up the next player group for editing if pressed once.
By pressing 'N' and holding it, the program will do a quick scan through
the groups showing only the real size players in the lower right. The
new group will come up blank and then Group 0 will be shown again.

R - REVERSE will reverse the dark and 1light areas of each player
displayed (i.e., make a negative image).

U - UNDO will restore all players displayed to the form currently
stored.

CLEAR - Pressing the CLEAR key will erase all displayed players.
INSERT - Pressing the INSERT key once will insert one blank line at the
top of each player (in case you forget to put one in). A blank line is
required at the top and bottom of each player to keep them from leaving
trails on the screen when moved.

DELETE - The DELETE key will permit you to clear out stored player
groups. All groups from the number typed to the end will be deleted.
This is useful for starting fresh, but be careful, a RETURN with no
number will abort with no deletions. One group should always be 1left.
EXAMPLE EDITING SESSION

1) Use DOS to make a duplicate working disk before starting this example
session, or CLOAD and then CSAVE onto a blank cassette.

2) CLOAD the cassette or boot the disk.
3) Type 'E' to enter the editor after selecting line resolution.

4) Type a 'G', then '03' and 'E' to edit. The four views of the robot
should be displayed on the screen.

5) Type 'R' for reverse. Type 'J' and the four players in the corner
will be separated. Type 'J' again and they will be joined.

6) Type 'P', Type '2'

7) Type 'B', Type '16'.

8) Press the INSERT key.

9) Press 'CLEAR' to clear the display.

10) Type 'U' and everything is back to normal!

—"

—

11) Type 'C' and use the joystick to set the color. Press the trigger
to save the color and return to editing.

12) Use the joystick to move the cursor around and the trigger to plot
or delete points. The cursor wraps around end-to-end, top-to-bottom.

13) When you are satisfied with your new creation, Type 'G', Type '04'.
This will save it as group 4 (current new group) when you type 'S'.

14) Type 'S' - Type (a four character name) push RETURN and watch it be
entered as lines 200040 - 20044.

15) If you want to see it move, continue or else go to Step 22.
16) Type 'D' - go to Demo (see Demo Game description).

17) Type '04' RETURN, Type 'D' RETURN for directional substitution of
player.

18) Now you can use the joystick to move the player(s) around.

19) The SELECT key will let you load a different group or the same one
with a re-selection of ALTERNATE/DIRECTIONAL mode.

20) The START key will take you back to the editor.
21) Push START and get back to it!

22) You should be in the editor with the last Group you worked on
showing and NEW GROUP = 5.

23) Type 'G', Type '00' and 'E'. You should now be back to the flying
saucer.

24) Type 'N' - a spaceship!

25) Push 'N' down and hold it. Each of the player groups will be shown
in rapid sequence in the lower right corner. Releasing the 'N' will
stop at the next group.

26) Now you can either delete the group you created by pushing DELETE
and typing '04' or Type 'Q' and this will save the entire program and
any new groups you may have created onto cassette or disk.

DEMO GAME (LINES 300 - 499)

The Demo Game is an illustration of how the players look when you move
them. It also can be played as a game. You start in the center of the
screen and try to get to the sides as many times as possible. Running
into a colored block on the top or bottom will blow you up and put you
back at the center. Whenever you run into something, it's playing field
number is shown. This gives you some idea of how the collision
detection works.

You can change groups by pressing the SELECT key which will also allow
you to change player modes from Directional to Alternate.

Directional means player 0 is used for UP, player 1 is used for RIGHT,
player 2 is used for DOWN and player 3 is used for LEFT.

Alternate means that the players 0 - 3 will alternately be substituted
for player 0, which is a fine way to see the effects of animation.

By pressing START you can return to the editor.

GAME CONSTRUCTION

The listing in Appendix 3 shows the lines required to use strings with
player - missile graphics. Lines 50 - 150 show a fast way to move a
player with the GOSUB call of Line 1000. Lines 1000 - 1070 move the
player and fire a "drawn" laser. Line 20001 contains the data for the
player.

Line 10, Lines 9005 - 9017 and 9100 - 9240 are the only lines required
as the basis for using this method. These may be LISTed from the PMEDIT
program to cassette to create a list file. The list file can be ENTERed
to form the basis for a game. If you have the disk version, then the
program in Appendix 3 is included as PMEX file.

Certain changes are required depending upon the resolution and graphics
mode desired.

In Line 9115, the 'E' must be replaced with a number appropriate for the
graphics mode used.

GR 0 'E' (8)
GR1 8
GR 2 8
GR3 8
GR 4 8
GR 5 16
GR 6 16
GR 7 24
GR 8 36

To change to single line resolution, change Line 9115, SZ=256:SH=1:SL=0
and Line 9210, POKE 559,62.

REFERENCES:

1. "Player-Missile Graphics with the Atari Personal Computer System",
Chris Crawford, COMPUTE, January 1981, pp. 66 — 72.

2. "Outpost: Atari", George Blank, CREATIVE COMPUTING, January 1981
(Player Missile Graphics).

3. "Outpost: Atari", George Blank, CREATIVE COMPUTING, April 1981, pp.
194 - 198.

APPENDIX 1
PROGRAM DESCRIPTION (see program listing)

1 - 11 HEADER
200 - 204 DEMO/EDITOR SELECT
300 - 499 GAME
300 - 330 INITIALIZE
335 - 360 DRAW PLAYFIELD
365 - 398 MOVE PLAYER
400 - 440 ADD OBSTACLES
445 - 458 CHECK PLAYER-PLAYFIELD COLLISION
460 - 499 SELECT OPTIONS
500 - 8840 EDITOR
500 - 640 SELECT FUNCTION
700 - 750 SAVE PROGRAM DATA
1000 — 1090 STORE PLAYER DATA AS STRING
1100 - 1180 EDIT PLAYER
2000 - 2060 FLASH CURSOR DURING EDIT
3000 - 3070 LOAD PLAYER TO SCREEN
4000 - 4040 REVERSE LIGHT/DARK AREAS
5500 - 5550 CALCULATE BYTE FOR STRING FROM SCREEN DATA
6000 — 6295 UNDO: REESTABLISH ORIGINAL PLAYER
6400 — 6420 JOIN PLAYERS - SEPARATE PLAYERS
6500 - 6590 INSERT 1 LINE AT TOP OF PLAYERS
7000 - 7050 CLEAR SCREEN OF PLAYER
7400 - 7440 SET PLAYER COLOR
8000 - 8150 SET NUMBER OF BYTES USED
8200 - 8300 SET NUMBER OF PLAYERS USED
8400 - 8460 SET GROUP NUMBER USED
8500 - 8540 DELETE LINE NUMBERS FOR ONE PLAYER
8800 - 8840 DELETE PLAYERS STARTING AT...
9000 - 9088 INITIALIZATION - TITLE
9100 - 9155 SET-UP PM AREA AS STRINGS
9200 - 9240 CLEAR PLAYER MISSILE STRINGS
9300 - 9399 TITLE PAGE & "CLIMBER"
20000- PLAYER DATA STORED AS STRINGS

APPENDIX 2
USEFUL ADDRESSES (all values in decimal)
559 put a 62 here for single line, a 46 for double line resolution

623 sets player/playfield priorities (one bit on)
1: all players have priority over all playfield registers
4: all playfield registers have priority over all players
2: mixed. PO & P1, then all playfield, then P2 & P3
8: mixed. PFO & PF1l, then all players, then PF2 & PF3

704 color of player-missile 0

705 color of player-missile 1

706 color of player-missile 2

707 color of player-missile 3

53248 horizontal position of player 0

53249 horizontal position of player 1

53250 horizontal position of player 2

53251 horizontal position of player 3

53252 horizontal position of missile 0

53253 horizontal position of missile 1

53254 horizontal position of missile 2

53255 horizontal position of missile 3

53256 size of player 0 (O=normal, l=double,3=quadruple)
53257 size of player 1

53258 size of player 2

53259 size of player 3

53277 A 3 here enables player-missile graphics, a 0 disables them
54279 put high byte of PMBASE here

OFFSETS
PMBASE DBL-LINE SNG-LINE
M$ (miss.) +384 +768
POS$ (plyr0) 4512 +1024
P1$(plyrl) +640 +1280
P2$ (plyr2) +768 +1536

P3$(plyr3) +896 +1796

APPENDIX 3

& REM PLYR/MISS EXAMPLE
1 REM MOVE PLYR W/JOYSTICK IN POS.1-USE TRIGGER TO FIRE!
2 REM by DENNIS R. ZANDER
3 REM (C) COPYRIGHT 1981
10 DIN M$(1),PO8$(1),P1$(1))P2$(1)P3$(1),P$(24),C$(20) :REM THESE MUST BE THE FIRST VARIABLES ENTERED!
20 GRAPHICS 7+16:X=120:Y=79:0=0.7
30 GOSUB 9#85:5G0SUB 9204:G0SUB 20000:505UB 78:60TD 1000
56 XD=1:YD=1:Y=Y+1:G0TD 75
68 XD=D:YD=-D:Y=Y-1:G0T0 75
78 XD=1:YD=4
75 X=X+1:POKE PLX:X:PO$(Y)=PLO$:RETURN
9% XD=-D:YD=D:Y=Y+1:60T0 115
184 XD=-D:YD=-D:Y=Y-1:60TD 115
118 XD=-1:YD=0
115 X=X-1:POKE PLX,X:PO$(Y)=PLO$:RETURN
130 XD=0:YD=1:Y=Y+1:PO$(Y)=PLO$:RETURN
140 XD=0:YD=-1:Y=Y-1:P#$(Y)=PLO$:RETURN
15¢ RETURN
1000 TRAP 1009:505UB STICK(8)#10
1018 IF STRIG(#) THEN 1000
1020 XP=X-45:YP=Y-13
1030 COLOR 3:PLOT XP:YP:TRAP 1048:DRANTO XP+344XD,YP+38#YD
1435 FOR I=11¢ TO 114:50UND #:1,8:8:NEXT T:SOUND 88,09
1044 COLOR #:PLOT XP)YP:TRAP 1000:LRANTD XP+30+XD,YP+30+YD
1056 GOSUB STICK(#)*10
1068 IF NOT STRIG() THEN 1450
1476 GOTO 1600
9005 LINE=20000: 1X=0:1¥=1:CH=764:PLX=53248: X#=175:Y#=91 :CONS=53279:CPF=53252:0=0: =1 : T=2:F=8
410 DIM CX$(1)2D$(E)1K$(UY1L$(3) 1 BT$(3) \NM$(4) 20X$=" *
9415 DIM BL$(20),BLSTS(20) PLOS(20) 1 FLIS(20) PL2$(20) 1 PL2$(20) s FLYRS(20)
9416 BLST$="6z":REM SEE LINE 7814 OF PMEDIT
9417 BL$="":REM SEE LINE 9817 OF PMEDIT
9100 REM ##2SETUP PM AREA AS STRINGSH
9101 REM 9100-9235 SAME AS PMEDIT EXCEPT FOR CONSTANTS.
9115 PMA=PEEK(184)-24:57=128:5H=0:5L=128
9126 A=FEEK(134)+PEEK (135)%256
9125 ST=PEEK(146)+PEEK(141)#254
9136 FOR I=0 TO 4:0FFS=PMA®256+GT¥3+5 73 1 sHI=INT((OFFS-ST) /256)
9148 POKE A+I#E+T)0FFS-ST-HI*256:POKE A+I¥E+3HI
9143 POKE A+I%E+4,SL:POKE A+I#E45,5H
9156 POKE A+I*E+4,SL:POKE A+I*E+7,SH
9155 NEXT I:RETURN
9200 REM #x2CLEAR PLYR/MIGS AREAMS N
9218 POKE 559,46:FOKE S4279,PMAIIF SIX28 THEN POKE 559,62
F228 POKE 93277, 3:0P0=120:P08(1)=""1P0$(57)="":PO$(2)=Pe$:P1$(1)="":P1$(57)="":P1$(2)=P1$
9227 P28(1)=""1F28(S1)=""1P2$(2)=P2$:P3$(1)="":P3$(S1)="":P3$(2)=P2%
9230 FOR =0 TO 3:POKE PLY+I,XQ+I¥3:NEXT I:POKE 784:CPO-20:POKE 785)CP8-80:POKE 704:CPO:POKE 707,CP8
9235 PS(50)="":P$({1)="":P$(2)=P$:RETURN
18600 REM YOUR OWN PLAYER CAN BE PUT AT LINE 20069
20008 FLO$="${":REM SEE LINE 2008 OF PMEDIT
20081 POKE PLX,X:PO$(Y)=PLO$:RETURN

